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Abstract

Contemporary neural networks still fall short of human-level generalization, which extends
far beyond our direct experiences. In this paper, we argue that the underlying cause for
this shortcoming is their inability to dynamically and flexibly bind information that is
distributed throughout the network. This binding problem affects their capacity to acquire
a compositional understanding of the world in terms of symbol-like entities (like objects),
which is crucial for generalizing in predictable and systematic ways. To address this issue,
we propose a unifying framework that revolves around forming meaningful entities from
unstructured sensory inputs (segregation), maintaining this separation of information at a
representational level (representation), and using these entities to construct new inferences,
predictions, and behaviors (composition). Our analysis draws inspiration from a wealth of
research in neuroscience and cognitive psychology, and surveys relevant mechanisms from
the machine learning literature, to help identify a combination of inductive biases that allow
symbolic information processing to emerge naturally in neural networks. We believe that
a compositional approach to Al, in terms of grounded symbol-like representations, is of
fundamental importance for realizing human-level generalization, and we hope that this
paper may contribute towards that goal as a reference and inspiration.

Greff, Klaus, Sjoerd Van Steenkiste, and Jurgen Schmidhuber. "On the binding problem in artificial neural networks." arXiv preprint arXiv:2012.05208 (2020).



The Binding Problem

* NNs fall short on OOD, where
humans don’t

Greff, Klaus, Sjoerd Van Steenkiste, and Jurgen Schmidhuber. "On the binding problem in artificial neural networks." arXiv preprint arXiv:2012.05208 (2020).



The Binding Problem

* NNs fall short on OOD, where
humans don’t

* One explanation — NNs learn
surface statistics, not
underlying concepts
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The Binding Problem

* NNs fall short on OOD, where
humans don’t

* One explanation — NNs learn
surface statistics, not
underlying concepts

 Toddlers/monkeys/cats exhibit
symbolic or object reasoning

Greff, Klaus, Sjoerd Van Steenkiste, and Jurgen Schmidhuber. "On the binding problem in artificial neural networks." arXiv preprint arXiv:2012.05208 (2020).



The Binding Problem

Segregation  Representation = Composition

* Object-level abstractions are
self-contained
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Greff, Klaus, Sjoerd Van Steenkiste, and Jurgen Schmidhuber. "On the binding problem in artificial neural networks
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Instance Slots Sequential Slots Spatial Slots Category Slots

Greff, Klaus, Sjoerd Van Steenkiste, and Jurgen Schmidhuber. "On the binding problem in artificial neural networks." arXiv preprint arXiv:2012.05208 (2020).



Instance Slots

Architectures:
e MONet SLOT ATTENTION
(Burgess, Christopher P., et al, 2019)
- GENESIS GhE Cr\y sLoT
(Engelcke, Martin, et al, 2019) DECODER
e SlotAttention

(Locatello, Francesco, et al., 2020)

Locatello, Francesco, et al. "Object-centric learning with slot attenfion." Advances in neural information processing systems 33 (2020): 11525-115638.



Slots
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Locatello, Francesco, et al. "Object-centric learning with slot attention." Advances in neural information processing systems 33 (2020): 11525-11538.



SIOTATTe n'l'iOn (Locatello, Francesco, et al., 2020)

SLOT ATTENTION /-

CNN @ SLOT
DECODER

k, v ATTENTION:

SLOTS COMPETE
FOR INPUT KEYS

FEATURE MAPS
+ POSITION EMB.

Locatello, Francesco, et al. "Object-centric learning with slot attenfion." Advances in neural information processing systems 33 (2020): 11525-115638.



SIOTATTe n'l'iOn (Locatello, Francesco, et al., 2020)

SLOT ATTENTION /-

CNN @ = SLOT
DECODER

k, v ATTENTION:

SLOTS COMPETE
FOR INPUT KEYS

Algorithm 1 Slot Attention module. The input is a set of NV vectors of dimension Dj,pues Which is
mapped to a set of K slots of dimension Dgyots. We initialize the slots by sampling their initial values
as independent samples from a Gaussian distribution with shared, learnable parameters p € RPstew

and o € RP=s_ In our experiments we set the number of iterations to 7" = 3.
1: Input: inputs € RV*Dimus s10ts ~ N (p, diag(c)) € RE*Dsiots
2: Layer params: k, ¢, v: linear projections for attention; GRU; MLP; LayerNorm (x3)
3:  inputs = LayerNorm (inputs)
4: fort=0...T
5: slots_prev = slots
6 slots = LayerNorm(slots)
7 attn = Softmax (%k(inputs) -q(slots)T, axis=‘slots’) # norm. over slots
FEATURE MAPS 8 updates = WeightedMean (weights=attn + ¢, values=v(inputs)) # aggregate
+ POSITION EMB. 9: slots = GRU (state=slots_prev, inputs=updates) # GRU update (per slot)
10: slots += MLP (LayerNorm (slots)) # optional residual MLP (per slot)

: 11: return slots
t=

Locatello, Francesco, et al. "Object-centric learning with slot attenfion." Advances in neural information processing systems 33 (2020): 11525-115638.



Some examples:
DI N OSAU R (Seitzer, Maximilian, et al, 2022)

Scaling to “real” data

MOVi-C

Image

DINOSAUR

Seitzer, Maximilian, et al. "Bridging the gap to real-world object-centric learning." arXiv preprint arXiv:2209.14860 (2022).



Some examples:
SIOT Former (Wu, Ziyi, et al, 2022)

Next frame prediction

GT Other methods SlotFormer

Wu, Ziyi, et al. "Slotformer: Unsupervised visual dynamics simulation with object-centric models." arXiv preprint arXiv:2210.05861 (2022).



More examples:

Slot-based generation editing,

temporal slots, audio slots,
efc.
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Machine Learning Graph Representation Lear... Graph Neural Networks
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H OpeS (Dittadi, Andrea, et al, 2021)

* Object-centric representations are useful for
downstream tasks;

* One object’s distribution shift does not affect
others;

* Object-centric models can still relatively robustly
separate objects even under global distribution
shifts.

=> Compositional Generalization? Data Efficiency?

Dittadi, Andrea, et al. "Generalization and robustness implications in object-centric learning." arXiv preprint arXiv:2107.00637 (2021).
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ABSTRACT

Learning representations that generalize to novel compositions of known con-
cepts is crucial for bridging the gap between human and machine perception. One
prominent effort is learning object-centric representations, which are widely con-
jectured to enable compositional generalization. Yet, it remains unclear when this
conjecture will be true, as a principled theoretical or empirical understanding of
compositional generalization is lacking. In this work, we investigate when com-
positional generalization is guaranteed for object-centric representations through
the lens of identifiability theory. We show that autoencoders that satisfy structural
assumptions on the decoder and enforce encoder-decoder consistency will learn
object-cenfric representations that provably generalize compositionally. We vali-
date our theoretical result and highlight the practical relevance of our assumptions
through experiments on synthetic image data.

Wiedemer, Thaddaus, et al. "Provable Compositional Generalization for Object-Centric Learning." arXiv preprint arXiv:2310.06327 (2023).
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Encoder’s Failure

add. decoder + encoder
additive decoder add. decoder + encoder with consistency loss




Decoder’s Success

+ (Brady, Jack, et al, 2023): Compositional, irreducible and invertable
deCOder gIVGS SIOT—IdeﬂTIfIabIIITy A | Compositional Generator

Two slots never affect the same pixel
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Brady, Jack, et al. "Provably learning object-centric representations.” International Conference on Machine Learning. PMLR, 2023.



Decoder’s Success

+ (Brady, Jack, et al, 2023): Compositional, irreducible and invertable
decoder gives slot-identifiability

* In Thm. 1& Thm. 2 we adapted this result, and show that

additive decoder allows sloT—idenTifiabiliTy (concurrent to Lachapelle,
Sébastien, et al. 2024)

Lachapelle, Sebastien, et al. "Additive decoders for latent variables identification and cartesian-product extrapolation.”
Advances in Neural Information Processing Systems 36 (2024).

Brady, Jack, et al. "Provably learning object-centric representations.” International Conference on Machine Learning. PMLR, 2023.



Aligning Decoder and Encoder
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Aligning Decoder and Encoder

e
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In Thm. 3 we show that minimizing both L. and L.ons ©on ID combinations allows
autoencoder to generalize compositionally



Revisiting SlotAttenion
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Takeaways

* |n object-centric learning compositional generalization is
possible theoretically and empirically;

« Current assumptions for provable generalization are too
restrictive for real world data;

- Training on synthetic data can lead to a better generalization;

* |tis hard to scale consistency loss to more slots. Input/output
normalization is crucial.
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